

Sampling methods for effective young fish monitoring in Koopmanspolder

MSc internship Dian Oosterhuis May – August 2022

MSc internship Dian Oosterhuis

Supervisors: Jeroen Veraart (WENR), Remco van Ek (W&B), Jaap Quak (Sportvisserij Nederland

Introduction (1)

Living lab Koopmanspolder: concept "Achteroever" / Inland buffer zones

Natural dynamic water level, vegetation, birds, fish

happen

What are effective sampling methods for monitoring young fish (juvenile, larvae) in the Koopmanspolder?

Investigate the sampling methods effective for monitoring young fish by exploring....

Q1: How effective is the use of fish traps (box traps and bottle traps) for young fish sampling compared to fish larvae nets?

Q2: Is presence of young fish different across locations?

Q3: Is presence of young fish different across time?

Q4: What are the differences in habitats between locations?

Methods: overview

- May 25, June 1, June 9 and June 16
- Fish sampling and laboratory analysis
- Habitat
 - Incl. Zooplankton sampling and laboratory analysis
- Statistical analysis (fish)

• Box traps (Cottrell et al., 2021), provided by SVN

Methods: Box traps

- Self-designed
- Bottles (1L)
- 12 bamboo sticks (2.30 m)
- black tape
- iron wire
- aquarium glue

Methods: Bottle traps

Methods: Fish larvae net

Fish larvae net

Mesh size: 0.5 mm

Provided by Aquaculture & Fisheries Group (Leo Nagelkerke & Twan Stoffers)

Methods: *sampling*

• Fish: sort in white bucket, subsampling (%), ethanol (96%)

Zooplankton: 80 μm
planktonnet (Twan Stoffers
WUR), lugol

Methods: Habitat

- Coverage substrate & vegetation
- Dimensions
- Temperature logger

Methods: Laboratory analysis

• Fish: Species, Life stage, TFL, Twan Stoffers (WUR), Pinder (2001)

• Zooplankton: Protocol Marie-claire (WUR) and counting cell Graticules optics

Methods: Statistical analysis

Response variable	Method	Location	Time
Fish count	Х	Х	X
Fish count <i>R. amarus</i>		Х	Х
Fish count <i>K. caucasica</i>		Х	X
Fish length <i>R. amarus</i>			Х
Fish length K. caucasica			X

- All data = non-normal
- Kruskal Wallis χ^2
- Dunn test: Pairwise comparisons

Results: Fish identification

Difficulty of **morphological identification**: looks very similar but different species

Pigmentation

Species	Bottle	Bottle	Box trap	Fish
	trap	trap		larvae net
	shallow	shallow		
	dark	light		
Alburnus		-		170
alburnus				
Cobitis taenia	1			
Esox lucius	1		2	
Gasterosteus				2
aculeatus				
Knipowitschia		1	77	282
caucasica				
Leucaspius				125
delineatus				
Perca fluviatilis				1
Pungitius	1			4
pungitius				
Rhodeus			63	450
amarus				
Proterorhinus	1			
semilunaris				

Results: *Sampling methods*

Fish count

Kruskal-Wallis, $\chi^2(2) = 20.01$, p < 0.0001, n = 48

Results: Location and time (relative)

Results: Location and time (absolute)

and the station of the

BB1 BB2 BB3 BB4 Many Many 25-5 1-6 9-6 16-6 Proterorhinus semilunaris 🖸 Rhodeus amarus Pungitius pungitius Perca fluviatilis Leucaspius delineatus Knipowitschia caucasica Gasterosteus aculeatus Esox lucius Cobitis taenia Alburnus alburnus

Results: Location and time

Results: Fish length R. amarus

Kruskal-Wallis, $\chi^2(3) = 104.68$, p = <0.0001, n = 450

June 16

Results: Habitat

Results: Vegetation coverage

Similar but B1 slightly different from the others!

Results: Substrate coverage

Discussion: *fish* – *habitat* and *time*

Mussels, invasion, substrates

< species than ATKB

locations, habitat, sampling effort, season

Fish - time/location (NS)

Similar locations, schooling behaviour

Fish length

Time, Waterdepth (LATER!)

Discussion: *fish – habitat (food availibity)*

Zooplankton	Larvae diet	Source	
A. alburnus*	Calanoida, Cyclopoida (nauplii, adult), Rotifera	(Nunn et al., 2012)	
Leucaspius delineatus*	Protozoan, Rotifera, Copepoda	(Pinder et al., 2005)	
Rhodeus amarus*	Phytophage		
Knipowitschia caucasica*	?		Green = evidence
Esox Lucius	Cyclopoida, Calanoida	(Salonen & Engström-Öst, 2010)	potential food resources
Cobitis taenia	?		
Perca fluviatilis	Copepoda (nauplii, adults), Keratella cochlearis, Rotifera (order Ploima)	(Mikheev & Wanzenböck, 2010)	Orange = no evidence
Proterorhinus semilunaris	Cyclopoida		White = no zooplankton
Rutilus rutilus	Calanoida Nauplius (Cyclopoida)	(Nunn et al., 2012)	
Gasterosteus aculeatus	Calanoida Nauplius (Cyclopoida)	(Nunn et al., 2012)	
Pungitius pungitius	?		

Discussion: *methods*

- Small and only 12 traps
- No mesh

- NS but more fish larvae
- 4 traps
- + bigger > bottles

- + Significantly more fish larvae
- + 795 L water per location
- Net too big for (micro)habitat at one location?

Conclusions

Response variable	Q1: How effective are the sampling methods?	Q2: What are the differences in fish among locations?	Q3: What are the differences in fish among sampling times?
Total fish count	Net > Box trap* Net > Bottle trap*	ns	ns
Fish count <i>R. amarus</i>		ns	ns
Fish count <i>K. caucasica</i>		ns	May 25 – June 16*
Fish length R. amarus		ns	All except June 9 – June 16
Fish length K. caucasica		ns	May 25 – June 16 June 1 – June 16 June 9 – June 16

Q4: What are the differences in habitats between locations?

→ Similar!

*P-value < 0.05 statistical significance ns = not statistically significant Recommendations: What are effective sampling methods for monitoring young fish (juvenile, larvae) in the Koopmanspolder?

Recommendations: What are effective sampling methods for monitoring young fish (juvenile, larvae) in the Koopmanspolder?

Recommendations: Which sampling efforts are needed for effectively monitoring juvenile fish in the Koopmanspolder?

Sampling location choice: spread and/or systematically chosen with habitat / water depth

Optimale waterdiepte in relatie tot vislengte

Future

- Increase predation of exotic species and diversity native species
- Substrates and vegetation
- Water level and vegetation management
- Monitoring young fish and natural dynamics

Special thanks:

Supervisors: Jeroen Veraart (WENR), Remco van Ek (W&B), Jaap Quak (Sportvisserij Nederland)

Assistance in the field: SVN, Ilse and Connie (WUR), Mees (UvA)

Additional slides

Methods: statistical analysis All data = non-normal

Response variable	Method	Location	Time
Fish count	Х	Х	Х
Fish count <i>R. amarus</i>		Х	Х
Fish count <i>K. caucasica</i>		X	Х
Fish length R. amarus			Х
Fish length <i>K. caucasica</i>			X

Kruskal Wallis test, pairwise comparisons of the Dunn test were performed with Bonferroni p-value adjustments.

Kruskal-Wallis Formula

$$H = \frac{12}{n(n+1)} \sum \frac{R_i^2}{n_i} - 3(n+1)$$

- n_i = the total number of points in the ith sample
- R_i = the rank sums of the ith sample

N = total number of sample points

Fish larvae determination

	Trunk region Caudal region		
	1		
Legend			
A Opening mouth	H Caudal Peduncle	O Base dorsal fin	
B Maxilla	I Urostyle	P Base anal fin	
C Gill	J Anus	Q Base pelvic fin	
D Dorsal line	K Pre-anal Medio-ventral line	R Dorsal fin-fold	
E Notochord (pigmentation)	L Swim bladder	S Caudal fin-fold	
F Horizontal myosept (Pigmentation)	M Heart-region	T Anal fin-fold	
G Lateral line	N Base pectoral fin	U Pelvic fin-fold	

Source: report student The key to identifying fish larvae An identification guide to fish larvae in the Rhine

Author: Krista Jonkers Supervisors Wageningen University and research: Twan Stoffers & Leo Nagelkerke Supervisor HAS University of Applied Sciences: Tom Brink

Figure 3.1. Common Nase (stage 2), indicated are terms used in the identification guide.

Results: juvenile - adult

Esox Lucius (juvenile, .. cm)

Sampling method: Shallow dark bottle trap

Proterorhinus semilunaris (adult, .. cm)

Results: fish identification

Juvenile

Fish larvae

Knipowitschia caucasica

Sampling method: fish larvae net

Results: fish identification

Juvenile

Fish larvae

Rhodeus amarus

Pungitius pungitius

Sampling location	and the terms of the	Emerged vegetation	Submerged vegetation
B1		Phragmites australis	Elodea nuttallii
BB2		Phragmites australis	Elodea nuttallii, Persicaria amphibia, Ceratophyllum demsum,
BB3	and the second	Phragmites australis, Mentha	Persicaria amphibia,
		aquatica, Bolboschoenus maritimus,	Characeae, Potamogeton trichoides, Stuckenia pectinata
BB4		Phragmites australis, Schoenoplectus tabernaemontani, Polytrichum, Mentha aquatica	Mentha aquatica, Characeae, floating algae

